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Lecture 25

Data Converter Operation



Basic Operation of CMFB Block
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CMFB Circuits
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• Several (but not too many) CMFB blocks are widely used

• Can be classified as either continuous-time or discrete-time
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CS small compared to C1

• VOXX generated by simple bias generator

• φ1 and φ2 are complimentary non-overlapping clocks that run continuously

.•   •  •   •  •   Review from last lecture .•   •  •   •  • 
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Output Stages
The Concept:

gm

Output 
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Common Drain Amplifier Provides a Good Output Stage

Simple structure

Some loss of output signal swing

Significant power overhead

.•   •  •   •  •   Review from last lecture .•   •  •   •  • 



Other Selected Output Stages
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.•   •  •   •  •   Review from last lecture .•   •  •   •  • 



Fully-Differential Op Amp with CMFB and Output Stages
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Data Converters 

Types: 

 A/D (Analog to Digital)

  Converts Analog Input to a Digital Output 

 D/A (Digital to Analog)

  Converts a Digital Input to an Analog Output

A/D is the world’s most widely used  mixed-signal component

D/A is often included in a FB path of an A/D

A/D and D/A fields will remain hot indefinitely

      technology advances make data converter design more challenging

     embedded applications

 designs often very application dependent



D/A Converters

n INX DAC
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Basic structure:

Basic structure with differential outputs::



D/A Converters

n INX DAC
XOUT

XREF

Notation:

n XOUT

DAC
 INX

n XOUT

DAC

XREF

 INX

XREF is always present though often not shown on the symbol for the DAC



D/A Converters

IN n-1 n-1 1 0X =<b ,b ,...b ,b >

n XOUT

DAC
INX

b0 is the Least Significant Bit (LSB)

bn-1 is the Most Significant Bit (MSB)

Note:   some authors use different index notation

An Ideal DAC is characterized at low frequencies by its static performance

Number of ideal DAC outputs:  N=2n



D/A Converters

IN n-1 n-1 1 0X  =<b ,b ,...b ,b >

n XOUT

DAC
 INX

An Ideal DAC transfer characteristic (3-bits)

Code Ck is used to represent the decimal equivalent of the binary number <bn-1 .. b0)>

XOUT

<0 0 0> <0 0 1> <0 1 0> <0 11> <1 0 0> <1 010> <1 1 0> <1 1 1>

 INX
C0 C1 C2 C3 C4 C5 C6 C7

X-
REF



D/A Converters

 IN n-1 n-1 1 0X =<b ,b ,...b ,b >

n XOUT

DAC
 INX

An Ideal DAC transfer characteristic (3-bits)

XOUT

INX
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D/A Converters

 IN n-1 n-1 1 0X =<b ,b ,...b ,b >

n XOUT

DAC
 INX

An Ideal DAC transfer characteristic (3-bits)

All points of this  ideal DAC lie on a straight line

XOUT

 INXC0 C1 C2 C3 C4 C5 C6 C7

X-
REF



D/A Converters n XOUT

DAC
 INX

• Most D/A ideally have a linear relationship between binary input and  

   analog output

• Output represents a discrete set of continuous variables

• Typically this number is an integral power of 2, i.e. N=2n

•            is always dimensionless

• XOUT could have many different dimensions

• An ideal nonlinear characteristic is also possible (waveform generation  

   and companding)

• Will assume a linear transfer characteristic is desired unless specifically 

   stated to the contrary

 INX

XOUT

 INXC0 C1 C2 C3 C4 C5 C6 C7



D/A Converters n XOUT

DAC
 INX
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• Number of outputs gets very large for n large

• Spacing between outputs is XREF/2n and gets very small for n large

XOUT

 INXC0 C1 C2 C3 C4 C5 C6 C7



D/A Converters n XOUT

DAC
 INX

• Ideal steps all equal and termed the LSB 

• XLSB gets very small for small XREF and large n

e.g.  If XREF=1V and n=16, then N=216 =65,536, XLSB=15.25μV

XOUT

 INX

 REF
 LSB n2

=
X
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D/A Converters n XOUT

DAC
 INX

An alternate ideal 3-bit DAC

Irrespective of which form is considered, the increment in the output for one 

Boolean bit change in the input is XLSB and the total range is 1LSB less than XREF

XOUT

 INX

C0 C1 C2 C3

C4 C5 C6 C7



Applications of DACs

• Waveform Generation

• Voltage Generation

• Analog Trim or Calibration

• Industrial Control Systems

• Feedback Element in ADCs

• ….



Waveform Generation with DACs
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n-bit Binary 
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Example:  For n=3 XREF
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Example:  For large n
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Ramp (Saw-tooth) Generator



Waveform Generation with DACs

CLK

Generator
n-bit Binary 

Counter
D/A A

XOUTPeriod
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Example:  For n=3 XREF

XREF

XOUT

t

Sine Wave Generator

n

ROM 

or 

RAM

Distortion of the desired waveforms occurs due to both time and 

amplitude quantization

Often a filter precedes or follows the buffer amplifier to smooth the 

output waveform



A/D Converters
Basic structure:

Basic structure with differential inputs/references:
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A/D Converters
Notation:
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A/D Converters

OUT n-1 n-2  0X =<d ,d ,...d >

d0 is the Least Significant Bit (LSB)

dn-1 is the Most Significant Bit (MSB)

Note:    some authors use different index notation

An Ideal ADC is characterized at low frequencies by its static performance

XIN
ADC

n
XOUT

Number of ideal ADC outputs:  N=2n



A/D Converters
An Ideal ADC transfer characteristic (3-bits)
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A/D Converters
An Ideal ADC transfer characteristic (3-bits)
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A/D Converters
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• Number of bins gets very large for n large

• Spacing between break points  is XREF/2n and gets very small for n large
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where ε is small (typically less than 1LSB)

ε is the quantization error and is inherent in any ADC
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A/D Converters XIN
ADC

n
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Transition Points
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• Actual values of XIN where transitions occur are termed transition points or break points

• For an ideal n-bit ADC, there are 2n-1 transition points

• Ideally the transition points are all separated by 1 LSB  -- XLSB=XREF/2n

• Ideally the transition points are uniformly spaced

• In an actual ADC, the transition points will deviate a little from their ideal location

Labeling Convention: 

   We will define the transition point XTk to be the break point where the transition in the

code output to code Ck occurs.  This seemingly obvious ordering of break points becomes 

ambiguous, though, when more than one break points cause a transition to code Ck which 

can occur in some nonideal ADCs



A/D Converters XIN
ADC

n
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Quantization Errors
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A/D Converters XIN
ADC

n
XOUT

Quantization Errors

 OUT  IN- =Q X X

Magnitude of εQ bounded by ½ XLSB

Another Ideal ADC
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Is the performance of this ideal ADC really 

better than that of the previous ideal ADC?



Data Converter Architectures
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• Large number of different circuits have been proposed for building data converters

• Often a dramatic difference in performance from one structure to another

• Performance of almost all structures are identical if ideal components are used

• Much of data converter design involves identifying the problems associated with a  

given structure and figuring out ways to reduce the effects of these problems

• Critical that all problems that are significant be identified and solved

• Many of the problems are statistical in nature and implications of not solving 

problems are in a yield loss that may be dramatic



Performance Threshold

Data Converter Design Approach
Ideally all performance limitations below performance threshold



Performance Threshold

Data Converter Design Approach
Often one or two nonideal effects above performance threshold

Often try to push dominant nonideal effect down



Performance Threshold

Data Converter Design Approach
Often one or two nonideal effects above performance threshold

Often try to push dominant nonideal effect down



Performance Threshold

Data Converter Design Approach

If performance threshold is made “higher”, 

other effects pop up as dominant



Performance Threshold

Data Converter Design Approach

Push them down too



Performance Threshold

Data Converter Design Approach

Ultimately enhancing performance threshold makes it more 

difficult to further improve performance



Data Converter Design Process Much Like “Whack a Mole” game

A conceptual view:



Data Converter Architectures

XIN
ADC

n
XOUT

n XOUT
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INX

Strategy for discussing data converters

• Briefly look at some different data converter architectures

• Detailed discussion of performance parameters for data converters

• More detailed discussion of data converter architectures



Data Converter Architectures
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Nyquist Rate

Flash

Charge Redistribution

Pipeline

Two-step and Multi-Step

Interpolating

Algorithmic/Cyclic

Successive Approximation (Register) SAR

Single Slope / Dual Slope

Subranging

Folded

Interleaved

Current Steering

R-string

Charge Redistribution

Algorithmic

R-2R (ladder)

Pipelined

Subranging

Over-Sampled (Delta-Sigma)

Discrete-time

First-order/Higher Order

Continuous-time

Discrete-time

First-order/Higher Order

Continuous-time



R-String DAC
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Data Converter Architectures
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Current Steering DAC 
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Data Converter Architectures
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Data Converter Architectures
XIN

ADC
n

XOUT

VIN

DAC
n

CLK

DAC 

Controller

VREF

XOUT

Successive Approximation Register (SAR)



Data Converter Architectures
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Stay Safe and Stay Healthy !



End of Lecture 25
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